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LE'ITER TO THE EDITOR 

Statistical mechanics of the 2D quantum XY model in a 
transverse field 

Malte Henkel 
Physikalisches Institut der Universitat Bonn, Nussallee 12, D-5300, Bonn 1, West Germany 

Received 5 July I984 

Abstract. The 2~ quantum XY model is introduced and the phase diagram is obtained. 
The model shows a paramagnetic, an ordered ferromagnetic and an ordered 'oscillatory' 
phase. The line of phase transitions from the paramagnetic to the ferromagnetic phase is 
seen to be in the same universality class as the 3D Ising model. Along this line, critical 
exponents are Y = 0.629 f 0.002 and /3 = 0.324* 0.009. 

In this letter we summarise the results of a study on the two-dimensional XY-model 
in a transverse field using finite size scaling. The Hamiltonian reads 

H = - h C  a ' ( n ) -  {4(1 +7)aX(n)a"(n') +f( l  -~)ay(n)aY(n')}, (1) 
n (n.n') 

where nearest-neighbour interactions are understood and U", ay, a' are the Pauli 
matrices. Although the model is well known in one dimension (see e.g. Barouch and 
McCoy 1971), in two dimensions only the T )  = 1 case, which corresponds to the ( 2 +  1 ) ~  

Ising model, has been studied (Marland 1981, Hamer 1983, Hamer and Irving 1984). 
For all values of 7, H is taken as a quantum Hamiltonian with h as a temperature-like 
variable. 

For 7) f 0, the global symmetry is Z,, thus H can be written as the direct sum of 
block matrices. The blocks are labelled by their charge 0 and 1 , respectively, according 
to the eigenvalues of the operator 

B = -  1-exp i . nCa ' (n )  . 
2 l [  ( n )I 

Let E,(h)  be the lowest eigenvalue of H in the charge sector 0 and E , ( h )  the lowest 
eigenvalue in the charge sector 1. Numerical calculations show that these are the two 
lowest eigenvalues of H. The energy gap is 

m ( h )  = El(h) - E d h )  (3) 

P ( h )  = m(h)/[2hm'(h)- m ( h ) ] .  (4) 

and the beta function reads (e.g. Hamer 1983) 

The magnetisation is computed as follows (Yang 1952, Hamer 1982). Let IO), 11) be 
the eigenvectors corresponding to E,( h)  and El( h) .  Then the magnetisation is given by 

= (014  1)- ( 5 )  
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where the magnetisation operator per spin is ( X  is the number of sites): 

1 
N n  

A =-c aX(n). 
The following boundary conditions will be considered: 

( 1 )  periodic boundary conditions in both charge sectors; 
(2) antiperiodic boundary conditions in the charge sector 0, and periodic boundary 

conditions in the charge sector 1. 
For brevity, these boundary conditions will be referred to as ‘periodic’ ( PP) and 

‘antiperiodic’ (AP), respectively. For the ( I   ti)^ case, the AP conditions give the exact 
energy gap for every lattice with at least two sites. Even if this does not hold true for 
more general models, the convergence of the estimates of the critical parameters is 
improved, as first shown for a Z,-spin-chain by Centen et a1 (1982). 

The eigenvalues were obtained for square N x N lattices, with N = 2 , 3 , 4 , 5 .  
We now consider the phase diagram shown in figure 1. One has a paramagnetic, 

an ordered ferromagnetic and an ordered ‘oscillatory’ phase. The critical line separating 
the paramagnetic and the ferromagnetic phases belongs to the 3~ Ising universality 
class, if 7 f 0. The transition to the oscillatory phase is given for periodic boundary 
conditions by an N-independent zero of the energy gap which occurs at h = h,, where 
h, is given by 

( h , / 2 ) 2 + 7 2 =  1 .  (7) 

0 ’  I i 3 
h 

Figure 1. Phase diagram of the 2D quantum XY model. The phases are labelled as: 
P = paramagnetic: C = ferromagnetic (commensurate); 0 = oscillatory. 

At the point h = h,, the model displays a long-range antiferromagnetic ordering. This 
kind of effect has also been observed for a I D  quantum Heisenberg model (Kurmann 
et a1 1982). For h <  h,, the energy gap shows an oscillating behaviour. Further 
investigations on the phases will be given in a later paper, (Henkel and Hoeger 1984). 

From now on we concentrate on the Ising critical line. We shall determine the 
critical parameters using finite-size scaling theory (Fisher 197 1 ) .  

Estimates ( h N )  of the critical field h,( 7) are obtained from both boundary conditions 
by solving 

“ N  ( A N  1 = ( N  - 1 ) m N - i ( h N ) .  (8) 
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The results are shown in table 1. Now the mean 
N - _  - ;( h”‘ + hA,P) (9) 

is less dependent on N than h“‘ or hkP for 7 = 1.0 and 7 = 0.7. In these cases, the 
sequences h;J is extrapolated with both the van den Broeck and Schwartz (1979) and 
the Lubkin (1952) algorithm. For 7 = 0.5 only the sequence h”,’ is extrapolated. the 
mean of both algorithms is our estimate of h , ( ~ ) .  The results are: 

h,( 1 .O) = 3.05 * 0.01, 

hJ0.7) = 2.720 f 0.006, (10) 
hJ0.5)  = 2.50*0.01, 

where the errors quoted in (10) are estimated from the fact that the sequence hN 
decreases for periodic while increasing for ‘antiperiodic’ boundary conditions (this 
holds for 7 = 1 .O and 0.7; for 7 = 0.5 we expect the error to have the same order of 
magnitude as in the other cases). 

Table 1. Finite-size estimates of the critical field h , ( q )  for periodic and ‘antiperiodic’ 
boundary conditions. 

q = 1.0 q =0.7 q = 0.5 
N PP AP PP AP PP AP 

2 3.841 10 4.800 00 3.926 37 4.431 75 3.963 33 4.230 30 
3 3.164 56 2.999 79 2.71 1 80 2.715 68 2.409 90 2.503 06 
4 3.084 05 3.022 97 2.732 45 2.709 74 2.492 49 2.502 25 
5 3.060 95 3.036 05 2.726 31 2.713 59 2.501 98 2.500 87 

Now we determine the critical exponent v. In table 2 we give the slope of the 
energy gap evaluated at the fields hN (see table 1). The value of v can be estimated 
independently for each value of 7, N and for each boundary condition from the 
finite-size behaviour of the beta function (4): 

where the parameter E is introduced to check for stability. The stability region is 
bounded by those values of E (denoted by and e2, respectively) at which the sequence 

Table 2. Slope of the energy gap evaluated at the field h ,  (see table 1) with m = m ( h  - h J .  

7) = 1.0 q =0.7 q = 0.5 
NI, N2 PP AP PP AP PP AP 

2.3 1.7759 2.3399 1.7577 2.2223 1.7500 2.1427 
1.9597 2.7699 1.8551 2.62 12 1.7318 2.4891 

394 1.9204 2.7552 1.8688 2.6253 1.8223 2.4897 
2.1370 3.1689 2.0520 3.0153 1.9607 2.8569 

475 2.1163 3.1509 2.0472 3.0092 1.9750 2.8532 
2.3325 3.5348 2.2434 3.3736 2.1462 3.1953 
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1 /  v N (  E )  changes from monotonic (either increasing or decreasing) to oscillatory 
behaviour. We now take 

l /  vN  = b( 1/ V N ( & I )  + I /  Y N ( E 2 ) )  ( 1 2 )  
to estimate l / v  with the accuracy 

These numbers are given in table 3 for 7 = 1.0, 0.7 and 0.5 and the different boundary 
conditions, together with the respective values for the E ’ S .  

The weighted mean of the data in tabel 3 gives for Y :  

v = 0.629 * 0.002. (14)  

To improve convergence, the energy gap was taken as a function m = 
m [ ( h  - hN)/hN] for the API case and 7 = 0.7 periodic boundary condition and in the 
form m = m ( h  - h N )  for all the other cases. 

Table 3. Finite-size estimates (equation (12)) for the exponent I/v.  The numbers given 
in brackets at the bottom of each column are the respective values for E ,  and .e2. 

N PP AP 

q = 1.0 3 
4 
5 

q = 0.7 3 
4 
5 

q =0.5 3 
4 
5 

1.592 i 0.002 
1.592 f 0.002 
1.592 f 0.002 
(O.ll/O.12) 

1.57 f 0.07 
1.59 f 0.05 
1.58 f 0.04 

(-0.435/-0.25) 

2.7 f 1 .O 
2.8 f 0.9 
2.6 f 0.8 

(1.33/6.0) 

1.60 i0 .02  
1.605 f0.015 
1.604f 0.010 

(-0.075/ -0.020) 

1.577 f 0.007 
1.575 i0.005 
1.576 f 0.004 

(-0.07/-0.05) 

1.61 f 0.06 
1.63 f 0.04 
I .62 f 0.03 

(0.01/0.205) 

The magnetisation exponent p is determined by the same method. At the critical 
field h,(7) (equation ( 1 0 ) )  the magnetisation was computed from ( 6 )  for periodic 
boundary conditions (see table 4 ) .  Going through the same kind of analysis, we obtain: 

p = 0.324 f 0.009, (15) 

Table 4. Finite-size magnetisation at the critical field for periodic boundary conditions. 

1.0 0.7 0.5 N 

1 1 .o 1 .o 1 .o 
2 0.7290 0.7063 0.6806 
3 0.6036 0.5799 0.5531 
4 0.525 1 0.5030 0.4768 
5 0.4699 0.4501 0.4223 
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The only estimates available in the literature are for the Ising model ( 7  = 1) and 
periodic boundary conditions only (Hamer 1983, Hamer and Irving 1984), giving 
Y = 0.635 f 0.005 and v = 0.64, respectively. 

Our results compare well with the results available for the 3~ Ising universality 
class (e.g. Le Gillou and Zinn-Justin 1980, Marland 1981, Pearson 1984, Pawley et a1 
1984). 

It is a pleasure to thank Professor V Rittenberg for discussions and for a critical reading 
of the manuscript. 
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